Just a couple of points..

Did they clearly statr the pack configuration of 3p, 210s ? Or is that a guess ?

On their facebook page they stated 640 caps in the pack ?..just a estimate ?

How sure are you they are not using the 3000F caps ?

Im not being critical here, just trying to understand why yesterday you were suggesting it would need 22,000 of the 3000F caps to do this, but now it looks like they are a lot closer with <1000 caps ??

# of cap cells was from reading the blogs, and then:

i just counted the 3p modules as shown in their diagram above, and

i counted the number of boxes in their mock-up picture, 8 top row, 16 middle and 18 bottom. Each box holds 15 cells. Both methods gave 630.

i didn't look at the facebook, so unaware of 640.

Cap size 2000 vs 3000:

This was determined both by weight and length.

A ruler was shown in the mockup photo on the boxes, ~3 boxes per 12" ruler, so about 4" length per cell (the 2000F cell is 108.1mm),

The caption under the shipping pallet indicated 250 kg, the 2000F cell weighs .39 kg, the 3000F cell weighs .51 kg. 640 cells x .39 = 249 kg. Maybe they got 10 extra to use for prototype and spares.

i think yesterday we were using standard EE math for series and parallel strings of capacitors to get to the 3600F, which was calculated by equating the kinetic energy of a 2500lb bike at 200 mph with the Capacitor energy with a 50V sag--this was before parsing thru all the blog pages trying to find tech details.

After finding the hive drawing and photo with the 3p connecting plates, etc. it was possible to determine the actual capacitance and voltage of a 3p210s pack made using the 2000F cells. This configuration yields a total capacitance of 28F at 600V, and could only work if the pack voltage only sagged ~9 Volts. Feel free to double check and challenge my numbers, i don't want to make a mistake in the basic data that affects the calculations and predictions.