DIY Electric Car Forums banner

1 - 6 of 6 Posts

·
Registered
Joined
·
93 Posts
Discussion Starter #1
The EVA website pointed me to the East Penn website that announced Ultra Battery back in September, 2008. Has anyone heard anything else?
Here is the announcement from the East Penn web site. Did the technology not prove itself?

East Penn Brings UltraBattery Technology to North America
September 22, 2008
East Penn has entered into an exclusive agreement with Furukawa Battery Co., LTD., a Japanese battery manufacturing company, to release a revolutionary new battery technology in North America. The UltraBattery, which will be manufactured by East Penn, combines an enhanced power negative electrode in a lead-acid battery.
The new technology enhances the ability of the battery to accept and deliver high levels of power with low levels of electrical resistance similar to a supercapacitor. Traditionally, supercapacitor and lead-acid batteries are separate components relying on electronic controllers and complex algorithms to switch power between both units. This new technology eliminates the need for additional electronic control and multiple energy storage devices.
The UltraBattery is ideal for Hybrid Electric Vehicles (HEVs), which rely on a battery operated electric motor to meet peak power needs during acceleration and recapture energy normally wasted through braking to recharge the battery. In certain life cycle tests, this new battery, invented by CSIRO (Commonwealth Scientific and Industrial Research Organization), the Australian national science agency, and developed/manufactured by Furukawa Battery Co., has exceeded the life cycles of its Nickel Metal Hydride counterpart for HEV applications. In addition to higher cycles, the UltraBattery utilizes a less cost-intensive technology and is easier to recycle than Nickel Metal Hydride and Lithium-Ion batteries.
 

·
Registered
Joined
·
2,494 Posts
Haven't heard much recently. I looked at these a while ago. Most folks agree that it's still vapourware until they are on the market. This particular battery is targeting Hybrids specifically as the caps can capture the high peak energy of regen. I looked at the pack used in the test and somewhat "bragged" about. All of those miles...that this car went...were driven by an ICE. . NOT those batteries. The bats were there for regen/accel test cycles. I can't recall the capacity now...but I remember that it was enough energy to drive my truck about 2 miles. :)
 

·
Registered
Joined
·
93 Posts
Discussion Starter #3
Hmm....I guess I must have misinterpreted the EV America Web Site in that case.

Lead Acid

Lead Acid batteries are the most common type of battery; they have been used for the last hundred years. The industry is mature. Lead acid batteries are the most recycled commodity with about 97% of batteries being recycled.1 This compares to only 55% of aluminium cans.

Batteries for on-road EV use are made as 6V, 8V, and 12V batteries. This allows one to choose different batteries for the same voltage. For example, you can use 12-12V batteries, 18-8V batteries, or 24-6V batteries in order to have a 144V system. The limitation is the space available and the payload capacity of the vehicle to be converted.

The advantage of PbA batteries is:


• Affordable

• Readily available from reputable manufacturers

• Available in different sizes

• Recyclable



The disadvantages are:


• High Weight to Power Density

• Energy Density


The good news is that this industry is developing Advanced Lead Acid Batteries. For example, East Penn Manufacturing Co. (www.eastpenn-deka.com) recently announced an "Ultra-battery" which combined lead acid batteries with super-capacitors in a single unit. They stated that this design quadruples battery life while improving power density by 50%. This pairing is 70% cheaper than NiMH batteries.
 

·
Registered
Joined
·
2,494 Posts
I'd say you read it correctly. . however, it was not really written accurately. The battery was never intended for EV use. It was designed for Hybrid use. Do some more research. You will find more details. I will look up some correspondence I sent to a local fellow who had a fixation with these for a Light Rail application (not well suited at all).
 

·
Registered
Joined
·
2,494 Posts
This was a blurb I wrote a few months ago in an email.....

I guess the biggest issue with this particular claim... is that an available product for sale, does not exist. You cannot buy one of these batteries. This is the Achilles heel for EV'ers. They have been pumped up and let down so many times, that until a product is available and proven capable for an application.... it is "vapourware". If you want to glamorize an emerging battery technology, I would rather pick EEstore and the Zenn Motors saga. This one has been set to revolutionize the world of energy storage for quite some time now. It's undergone 3rd party testing, arms-length evaluations etc.... still, no product.... and yes, I have read all the various reports.
http://www2.macleans.ca/2009/08/27/the-race-for-the-perfect-battery/

I have no doubt that CSIRO have some kind of product. We've seen pictures. If you look at the working prototype, it is a 12 volt, 8.5 Ah battery. The car that was tested to 160,000 km or whatever it was, is a hybrid. That means it was driven around the track by an ICE.. not by these batteries. The "cycles" described are braking, and resuming travel, cycles. The pack used in this car is a string of 12. Series connected, that's 144 volts. 144 volts @ 8.5 amp hours. By their admission (and typical in the world of discharging pb) 80% DofD is used. 144volts of 8.5 Ah @ 80% DofD is about 980watt-hours of energy. There is something known as Peukert's effect, which simply states that the faster you draw energy out of a battery, the less u get. For pb, that is usually around 1.3.... This is why batteries often have a time factor stated. The prototype batteries are 12 volts, 8.5 Ah at a 5 hour rate. This means, if you draw the power out of them over the course of 5 hours, you will get 8.5 amp-hours or 8.5 amps for 5 hours. EV's are very aggressive at using energy and 1 hour rates often apply. This means you don't get the 8.5 amp-hours any more... you get more like 70% of that. Let's say for the sake of argument that there is NO Peukert's effect (which is unlikely...although, it could be quite low) Assuming you get a full 80% DofD, usable energy of 980 watt-hours would drive my EV truck about 2 miles... maybe 3 with the wind behind me.

Obviously, these batteries were made for a hybrid application and have never been touted for any other purpose. This is likely because of their ability to absorb and discharge quickly due to the assistance of the ultracaps. Pure EV's or in your case a rail application, need very heavy sustained current draws for longer periods of time. It would be a severe mis-application....even if a significantly larger battery did exist....which it seems does not.

Cycle life is another issue. This controlled study touts the Ultrabattery as having 1100 cycles to 80% Dof D. This is significantly better than pb although currently produced Li product that you can buy today and is used in heavy motive power applications will exceed 5000 cycles to 80% DofD.

You may want to look at something like this battery. http://www.thunder-sky.com/pdf/2010723133950.pdf This cell contains 22,400 Wh of energy. With a string of these in series (to what ever voltage you want) you could discharge at a continuous rate of 7,000 amps and a short period burst of 140,000 amps. If you ran a parallel pack, you could double those numbers. Most rail applications use diesel over electric. This is too take advantage of the huge, low RPM torque offered by electric motors. Batteries would only need to be used as a buffer in this case. I'm not sure that battery energy density has reached a point where it would be well applied to battery-only motive power for rail use. I think a dedicated rail is much better suited to having electrical power delivered to it as needed. The electric trolley cars in Toronto have been in operation for many decades. . .granted the overhead lines are a bit dated. This mode of delivery could be easily modified to safe, concealed and of lower elevation...like below the car. The great things about electric drive are it's efficiency and low maintenance. ICE's are typically 18-22% while electric motors are 85-98% efficient.

I wouldn't get too hung up on the Ultrabattery, at least not yet. When it comes to market, if it comes to market...then we'll see. In my world of Engineering, we always kept an eye on emerging technologies....but we designed with proven ones
 
1 - 6 of 6 Posts
Top